
The IoT is Reality in Industrial Applications


Bob Karschnia, Vice President and General Manager of Wireless, Emerson, Bob Karschnia, Vice President and General Manager of Wireless for Emerson Process Management. Bob has over 24 years’ experience in the process c... More >>
Outside cars and trucks, connected sensors in the commercial world are not common. Most sensors are either not connected, like a thermometer mounted on a wall, or are simply part of a single and simple unconnected device, like a thermostat. And despite all the buzz about smart thermostats, very few are connected.
By contrast, there are hundreds of millions of connected wired and wireless pressure, level, flow, temperature, vibration, acoustic, position, analytical and other sensors installed and operating in the industrial sector, with millions more added each year.
These sensors connect through wired and wireless networks, often Ethernet-based, to a variety of higher level software platforms. This secure data connectivity can be either local or remote software platforms. For remote software platforms, data storage and computing can be done in the cloud.
These higher level software platforms include control and monitoring systems, asset management systems and specialized data analysis systems. When data analysis systems are remote, sophisticated big data analytics are performed by dedicated experts to reveal patterns, problems and solutions.
To summarize, the IoT in the industrial world is used to connect sensors to big data analytic and other systems to automatically improve performance, safety, reliability and energy efficiency by:
• Collecting data from sensors (things) much more cost effectively than ever before because sensors are often battery-powered and wireless
• Interpreting this data strategically using big data analytics and other techniques to turn the data into actionable information
• Presenting this actionable information to the right person, either plant personnel or remote experts, and at the right time; and
• Delivering performance improvements when personnel take corrective action.
As with many things, the industrial IoT comes to life with specific applications example, here are a few.
Ergon Refining’s Vicksburg, Miss. facility implemented an industrial IoT to connect vibration, acoustic, level, position and other sensors to an asset management system via both a wireless mesh network and a wired fieldbus network.
The asset management system analyzes the big data from the sensors and transforms it into actionable information which is delivered to plant personnel in one of two ways. Control room operators view this information on their PC-based human machine interface monitors, as do other plant personnel on office PCs connected to the Ethernet plant network. Mobile workers view this information on handheld industrial PCs connected to a plant wide Wi-Fi network powered by Cisco industrially-hardened access points.
The following reduced CapEx costs were realized:
• Significantly reduced sensor installation costs using wireless networks
• Calibration checks that are four times faster, but require only one-third as many staffers, and
• Wired and wireless networks reduced wiring costs and improved diagnostic capabilities as compared to traditional hardwired solutions
And these OpEx benefits were realized:
• Increased production capacity while avoiding capital investments through wireless tank level monitoring
• Improved safety through vibration monitoring in difficult to access locations, and
• Energy savings enable by wireless steam trap monitoring
Now that the infrastructure is in place at Ergon’s facility for data collection, analysis and distribution—it’s a simple matter to add other wireless sensors to leverage the initial investment and create more value.
“The IoT in the industrial world is used to connect sensors to big data analytic and other systems to automatically improve performance, safety, reliability and energy efficiency”
Many other industrial facilities are implementing their own industrial IoT, and one such application is steam trap monitoring via wireless acoustic transmitters. Acoustic sensors and specialized big data software analysis systems, often located remote from the plant and connected to the sensors via the Internet, detect steam trap problems automatically and alert plant personnel so they can take action.
By monitoring a plant’s steam traps and its steam distribution system automatically and continuously via an IoT application, energy losses costing up to $30,000 annually per steam trap can be eliminated. As many plants have scores of steam traps, savings can be considerable.
For example, a plant was experiencing a 15 percent annual steam trap failure rate, with 12.5 percent of the plant’s steam traps responsible for 38 percent of the steam loss. Correcting this issue with wireless steam trap acoustic sensors and accompanying big data analytics resulted in an annual savings of $301,108 and a payback period of just a few months.
Another industrial IoT example is monitoring valves controlling gas flows to flare stacks in refineries. Using wireless acoustic transmitters, one refinery was able to improve regulatory compliance and reduce hydrocarbon losses by $3 million annually due to timely detection and repair of faulty valves. The project paid for itself in five months, with an estimated annualized ROI of 271 percent annualized over 20 years.
In the commercial realm, the IoT is in the conceptual stage, with many possible permutations discussed—but with few installations up, running and delivering value. But in the industrial sector, hundreds of millions of connected sensors are currently installed with millions more coming online annually.
Many of these sensors are wireless because they cost much less to install than their wired equivalents. These low cost wireless sensors are securely connected via mesh networks to systems performing big data analytics to dramatically improve plant performance, resulting in payback periods measured in months, with ongoing savings afterwards.
ON THE DECK
Featured Vendors
TEERHUB TECHNOLOGY PRIVATE LIMITED (TTPL): "Collaboration to Cognitive" a Microsoft Services Providers Journey
Integrated Business Systems: Solutions for Accessing and Leveraging Data in a Mobile and Interconnected World
StratusLIVE: Advancing Nonprofit Success with Relationship-Focused Enterprise CRM Software & Business Intelligence Solutions
Data Systems Analysts: Providing Comprehensive Secure Collaboration Solutions to the Federal Government
Kollective Technology: Software Defined Enterprise Content Delivery Network for Scalable, High Quality Video
Highpoint Technology Group: Crafting Business Enabling Solutions through the Power of Microsoft Technologies
IntelliPoint Technologies, LLC: Enabling Efficient Operations through Dynamics GP and Network Automation
Imaginet: Developing InnovativeSolutions, Gaining Productivity and Visibility of the Microsoft Lands
Strategic CRM: Providing CRM Insights, Enhancing Customer Experience, and Promoting Channel Optimiza
Time Saver Technologies: Enabling Construction Companies to perk-up their Business and Planning Proc
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
The Journey to Swift Digital Transformation
Will data protection law reform open the door to easier international...
Virtual Immersive Learning: The Next Frontier in Higher Education
Making the Case For Moving from Health IT to Health Analytics
Data as a Business
